Lab 5 Mode Choice (2)

Yufeng Zhang zhan4879@umn.edu

CEGE-3201: Transportation Engineering

February 21, 2019

Report 1 grade statistics:

Mean	Max	Min	Median
3.275(82%)	-	-	3.35

Report 2 due date postponed to Mar. 6.

1. Mode Choice

Objectives

- Understand Independence of Irrelevant Alternatives (IIA)
- Build nested logit models
- Interpret nested logit model

1. Mode Choice

Independence of Irrelevant Alternatives

- Mode choice: Blue/red bus paradox
- Route choice:
 - Routes = $\{a+b, a+c, d\};$
 - Travel time = {T, T, T};
 - Probabilities = {1/3, 1/3, 1/3};

Figure: Route choice problem with overlapping segments

Decision Making Processes

Multinomial logit model (MNL) and nested logit model (NL).

process

Conditional Probabilities

First, choose between public transit and automobile; Then, choose between either local bus and light rail or drive alone and car pool.

Figure: Nested decision making process

$$\begin{split} P(\text{local bus}) = & P(\text{local bus}|\text{public transit})P(\text{public transit})\\ P(\text{drive alone}) = & P(\text{drive alone}|\text{automobile})P(\text{automobile}) \end{split}$$

Calculate Conditional Probabilities

There are various ways to estimate parameters of nested logit models.

 u_{PT} and u_{AU} are scale parameters that are specific to public transit and automobile branches respectively. These parameters will be also estimated from data.

Calculate Branch Probabilities

Utilities of elementary alternatives enter branch utilities as inclusive values(IV).

Figure: Branch choice

Calculate probabilities of choosing between public transit and automobile.

$$P(\mathsf{PT}) = \frac{\exp\left(u_{\mathsf{PT}}IV_{\mathsf{PT}}\right)}{\exp\left(u_{\mathsf{PT}}IV_{\mathsf{PT}}\right) + \exp\left(u_{\mathsf{AU}}IV_{\mathsf{AU}}\right)}$$
$$P(\mathsf{AU}) = \frac{\exp\left(u_{\mathsf{AU}}IV_{\mathsf{AU}}\right)}{\exp\left(u_{\mathsf{PT}}IV_{\mathsf{PT}}\right) + \exp\left(u_{\mathsf{AU}}IV_{\mathsf{AU}}\right)}$$

1. Mode Choice

Calculate Alternative Probabilities

Eg.

 $P(\mathsf{CP}) = P(\mathsf{CP}|\mathsf{AU})P(\mathsf{AU})$

Build Nested Logit Model Using R

R packages:

- R package "mlogit"
- Data set "TravelMode" from R package "AER"
 - How many choice situations are there in data sets?
 - How many alternatives are there in data sets?
 - What attributes are recorded in data sets?
- Follow the steps of constructing new data set in file "Nested Logit Models.pdf"